Akademik Bilgiler



İBRAHİM ÇANAK
PROFESÖR
Fen Fakültesi
Matematik Bölümü
Uygulamalı Matematik Ana Bilim Dalı
İletişim Bilgileri- E-posta: ibrahim.canak@ege.edu.tr
- Telefon: (232) 3115418
Eğitim Bilgileri- Lisans: Istanbul University, Türkiye , 1988
- Yüksek Lisans: Istanbul University, Türkiye , 1992
- Doktora: Missouri University of Science and Technology, A.B.D. , 1998
- Yardımcı Doçentlik: Adnan Menderes University, Türkiye , 2000
- Doçentlik: Adnan Menderes University, Türkiye , 2008
- Doçentlik: Ege University, Türkiye , 2010
- Profesörlük: Ege University, Türkiye , 2014

İndekslerce Taranan Dergilerdeki Yayınları (93 adet)- 2018, Ü. Totur, İ. Çanak, Tauberian theorems for the statistical convergence and the statistical (C,1,1) summability, Filomat,32 (1), 101–116.
- 2018, S. A. Sezer, R. Savaş, İ. Çanak, Tauberian conditions under which ordinary convergence follows from statistical convergence, Filomat.
- 2017, S. A. Sezer, İ. Çanak, Tauberian theorems for the summability methods of logarithmic type, Bulletin of the Malaysian Mathematical Sciences Society. DOI: 10.1007/s40840-016-0437-9
- 2017, İ. Çanak, Ü. Totur, S. A. Sezer, Cesaro integrability and Tauberian theorems in quantum calculus, An.Stiint.Univ. AI.I.Cuza Iasi.Mat.(N.S).
- 2017, İ. Çanak, Tauberian theorems for the product of Borel and Hölder summability methods, Analele Ştiintifice ale Universităţii "Al.I.Cuza" din Iaşi, Matematica, 63 (1) 37-43.
- 2017, Ü. Totur, İ. Çanak, General Tauberian theorems for Cesaro integrability of functions, Georgian Mathematical Journal.
- 2017, Ü. Totur, İ. Çanak, Some Tauberian conditions for the weighted mean method of summability, Analele Ştiintifice ale Universităţii "Al.I.Cuza" din Iaşi, Matematica, 63 (3) 483-494.
- 2017, Ü. Totur, İ. Çanak, On regularly generated double sequences, Filomat, 31 (3) 809-822.
- 2017, Ü. Totur, İ. Çanak, On regularly weighted generated sequences, Filomat, 31 (7) 2167-2173.
- 2017, S. A. Sezer, İ. Çanak, Power series methods of summability for series of fuzzy numbers and related Tauberian theorems, Soft Computing, 21 (4 ) 1057-1064.
- 2017, Ü. Totur, İ. Çanak, Tauberian conditions for the (C, α) integrability of functions, Positivity, 21 (1) 73-83.
- İ. Çanak, N. L. Braha, Ü. Totur, A Tauberian theorem for the generalized Nörlund summability method, Georgian Mathematical Journal. DOI: https://doi.org/10.1515/gmj-2017-0062
- 2017, İ. Çanak, Ü. Totur, Z. Önder, A Tauberian theorem for (C,1,1) summable double sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems, 14 (1) 61-75.
- 2017, Z. Önder, İ. Çanak, A Tauberian theorem for the weighted mean method of improper integrals of fuzzy-number-valued functions, Journal of Intelligent and Fuzzy Systems, 33 (1) 293-303.
- 2017, Z. Önder, İ. Çanak, Ü. Totur, Tauberian theorems for statistically (C,1,1) summable double sequences of fuzzy numbers, Open Mathematics, 15 (1), 157-178.
- 2017, Ü. Totur, İ. Çanak, A Tauberian theorem for the power series-summability method, 69 (12) 1701-1713, Ukrainian Mathematical Journal.
- 2016, İ. Çanak, Ü. Totur, An alternative proof of a Tauberian theorem for Abel summability method, Proyecciones Journal of Mathematics, 35 (3), 235-244.
- 2016, İ. Çanak, Z. Önder, Ü. Totur, Statistical extensions of some classical Tauberian theorems for Cesaro summability of triple sequences, Results in Mathematics, 70 (3) 457-473.
- 2016, S. A. Sezer, İ. Çanak, On converse theorems for the discrete Bürmann power series method of summability, Maejo International Journal of Science and Technology, 10 (03) 346-353.
- 2016, İ. Çanak, Ü. Totur, Some classical Tauberian theorems for (C,1,1,1) summable triple sequences, Georgian Mathematical Journal, 23 (1), 33–42.
- 2016, Ü. Totur, İ. Çanak, On Tauberian theorems for statistical weighted mean method of summability, Filomat, 30 (6) 1541-1548.
- 2016, İ. Çanak, A Tauberian theorem for the weighted mean method of summability, University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, 78 (2) 91-98.
- 2016, Y. Erdem, İ. Çanak, A Tauberian theorem for the product of Abel and Cesaro summability methods, Georgian Mathematical Journal, 23 (3) 343-350.
- 2016, İ. Çanak, On Tauberian theorems for Cesaro summability of sequences of fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 30, 2657-2662.
- 2016, İ. Çanak, Ü. Totur, S. A. Sezer, Necessary and sufficient conditions for geometric means of sequences in multiplicative calculus, Miskolc Mathematical Notes, 17 (2) 791-800.
- 2015, İ. Çanak, A Tauberian theorem for a general summability method, Analele Ştiintifice ale Universităţii "Al.I.Cuza" din Iaşi, Matematica 61 (1), 123-128.
- 2015, İ. Çanak, Ü. Totur, A theorem for the (J,p)-summability method, Acta Mathematica Hungarica, 145 (1) 220-228.
- 2015, S. A. Sezer, İ. Çanak, On a Tauberian theorem for the weighted mean method of summability, Kuwait Journal of Science, 42 (3) 1-9.
- 2015, S. A. Sezer, İ. Çanak, Convergence and subsequential convergence of regularly generated sequences, Miskolc Mathematical Notes, 16 (2), 1181-1189.
- 2015, Z. Önder, S. A. Sezer, İ. Çanak, A Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 28, 1403-1409.
- 2015, S. A. Sezer, İ. Çanak, Conditions for the equivalence of power series and discrete power series methods of summability, Filomat, 29 (10) 2275-2280.
- 2015, Y. Erdem, İ. Çanak, A one-sided theorem for the product of Abel and Cesaro summability methods, Miskolc Mathematical Notes, 16 (1), 101-114.
- 2015, Y. Erdem, İ. Çanak, B. P. Allahverdiev, Two theorems on the product of Abel and Cesaro summability methods, Comptes Rendus de L'Academie Bulgare des Sciences, 68 (3) 287-294.
- 2015, İ. Çanak, Ü. Totur , On subsequential convergence of bounded sequences, Miskolc Mathematical Notes, 16 (2), 721-728.
- 2014, İ. Çanak, On the Riesz mean of sequences of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems, 26 (6), 2685-2688.
- 2014, S. A. Sezer, İ. Çanak, Tauberian Remainder Theorems for the Weighted Mean Method of Summability, Mathematical Modelling and Analysis, 19 (2) 275-280.
- 2014, Ü. Totur, İ. Çanak, Some Tauberian conditions for statistical convergence, Comptes Rendus de L'Academie Bulgare des Sciences, 67 (7) 889-896.
- 2014, İ. Çanak, Tauberian theorems for Cesaro summability of sequences of fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 27 (2), 937-942.
- 2014, İ. Çanak, Hölder summability method of fuzzy numbers and a Tauberian theorem, Iranian Journal of Fuzzy Systems, 11 (4) 87-93.
- 2014, İ. Çanak, Some conditions under which slow oscillation of a sequence of fuzzy numbers follows from Cesaro summability of its generator sequence, Iranian Journal of Fuzzy Systems, 11 (4) 15-22.
- 2014, İ. Çanak, Some extended Tauberian theorems for (A)(k)(C, α) summability method, Acta Scientiarum. Technology, 36 (4), 679-683.
- 2013, İ. Çanak, Ü. Totur, Extended Tauberian theorem for the weighted mean method of summability, Ukrainian Mathematical Journal, 65 (7) 1032-1041.
- 2013, Ü. Totur, İ. Çanak, On the (C,1) summability method of improper integrals, Applied Mathematics and Computation, 219 (24) 11065-11070.
- 2013, Ü. Totur, İ. Çanak, On Tauberian conditions for (C,1) summability of integrals, Revista de la Unión Matemática Argentina, 54 (2), 59-65.
- 2012, İ. Çanak, Ü. Totur, Some Tauberian Conditions for Cesaro Summability Method, Mathematica Slovaca, 62 (2) 271-280.
- 2012, Ü. Totur, İ. Çanak, Some general Tauberian conditions for the weighted mean method summability, Computers and Mathematics with Applications, 63 (5) 999-1006.
- 2012, İ. Çanak, Ü. Totur, B. P. Allahverdiev, Tauberian conditions with controlled oscillatory behavior, Applied Mathematics Letters, 25 (3) 252-256.
- 2012, İ. Çanak, Ü. Totur, Some conditions for subsequential convergence and ordinary convergence, Journal of Computational Analysis and Applications, 14(3) 466-474.
- 2012, İ. Çanak, Ü. Totur, A Tauberian theorem for the discrete Mφ summability method, Applied Mathematics Letters, 25 (4), 771-774.
- 2012, İ. Çanak, Ü. Totur, Alternative proofs of some classical type Tauberian theorems for Cesaro summability of integrals, Mathematical and Computer Modelling, 55 (3) 1558-1561.
- 2012, Ü. Totur, İ. Çanak, One-sided Tauberian conditions for (C,1) summability method of integrals, Mathematical and Computer Modelling, 55, 1813–1818.
- 2012, İ. Çanak, Ü. Totur, Tauberian theorems for the (J,p) summability method, Applied Mathematics Letters, 25 (10) 1430-1434.
- 2012, İ. Çanak, Ü. Totur, The (C, α) integrability of functions by weighted mean methods, Filomat 26 (6) 1209-1214.
- 2011, İ. Çanak, Ü. Totur, A Tauberian theorem for Cesaro summability of integrals, Applied Mathematics Letters, 24 (3), 391-395.
- 2011, İ. Çanak, Ü. Totur, M. Dik, On Tauberian Theorems for (A, k) summability method, Mathematica Slovaca, 61 (6) 993-1001.
- 2011, İ. Çanak, A theorem for convergence of generator sequences,Computers and Mathematics with Applications, 61 (2), 408-411.
- 2011, U. Totur, İ. Çanak, Some sufficient conditions for subsequential convergence of a sequence, Computers and Mathematics with Applications, 61 (3), 567-572.
- 2011, U. Totur, İ. Çanak, M. Dik, Some one-sided conditions under which subsequential convergence follows from (A,k) summability method, Applied Mathematics Letters, 24 (5), 692-696.
- 2011, İ. Çanak, A theorem on the Cesaro summability method, Computers and Mathematics with Applications, 61 (4), 1162-1166.
- 2011, İ. Çanak, A note on a Tauberian theorem for (A, i) Limitable method II, Journal of Computational Analysis and Applications, 13 (5), 892-898.
- 2011, İ. Çanak, Ü. Totur, Tauberian conditions for Cesaro summability of integrals, Applied Mathematics Letters, 24 (6) 891-896.
- 2011, İ. Çanak, Ü. Totur, Some Tauberian theorems for the weighted mean methods of summability, Computers and Mathematics with Applications, 62(6) 2609–2615.
- 2011, İ. Çanak, Y. Erdem, On Tauberian theorems for (A)(C, α) summability method, Applied Mathematics and Computation, 218 (6) 2829-2836.
- 2011, İ. Çanak, On means (C,1) of sequences, Computers and Mathematics with Applications, 62 (9) 3446–3448.
- 2011, İ. Çanak, F. Hasekiler, D. Kebapcı, Some Tauberian Theorems for Regularly Generated Sequences, Computer and Mathematics with Applications, 62 (12) 4486-4491.
- 2010, İ. Çanak, Ü. Totur, Some Tauberian conditions for Borel summability methods, Applied Mathematics Letters, 23 (3), 302-305.
- 2010, İ. Çanak, Ü. Totur, M. Dik, One-sided Tauberian conditions for (A,k) summability method, Mathematical and Computer Modelling, 51 (5-6), 425-430.
- 2010, İ. Çanak, Ü. Totur, A Condition under which slow oscillation of a sequence follows from Cesaro summability of its generator sequence Applied Mathematics and Computation, 216 (5) 1618-1623.
- 2010, İ. Çanak, A short proof of the generalized Littlewood Tauberian theorem, Applied Mathematics Letters, 23 (7), 818-820.
- 2010, İ. Çanak, M. Dik, New types of continuity, Abstract and Applied Analysis, Article ID 258980, 7 pages.
- 2010, H. Çakalli, I. Çanak, M. Dik, Delta-quasi slowly oscillating continuity, Applied Mathematics and Computation, (216) 2865-2868.
- 2010, İ. Çanak, U. Totur, M. Dik, Some conditions under which subsequential convergence follows from (A,m) summability, Filomat, 24 (1) 133-139.
- 2010, İ. Çanak, Y. Erdem, Ü. Totur, Some Tauberian Theorems for (A)(C, α) summability method, Mathematical and Computer Modelling, 52 (5-6) 738 - 743.
- 2010, Ü.Totur, İ. Çanak, Tauberian conditions under which convergence follows from Abel summability, Applied Mathematics Letters, 23 (12), 1439-1443.
- 2010, Y. Erdem, İ. Çanak, A Tauberian theorem for (A)(C, α) summability, Computers and Mathematics with Applications, 60 (11), 2920-2925.
- 2008, İ. Çanak, Structure of Taylor coefficients by equivalence of Tauberian conditions, Demonstratio Mathematica, 41 (2), 309-315.
- 2008, İ. Çanak, M. Dik, On some Tauberian conditions for Abel summability method, International Journal of Mathematical Analysis, 2 (1), 27-33.
- 2008, İ. Çanak, Ü. Totur, A note on Tauberian theorems for regularly generated sequences, Tamkang Journal of Mathematics, 39 (2), 187-191.
- 2008, İ. Çanak, M. Dik, Some conditions under which subsequential convergence follows from boundedness, Applied Mathematics Letters, 21 (9), 957-960.
- 2008, İ. Çanak, Ü. Totur, Tauberian theorems for Abel limitability method, Central European Journal of Mathematics, 6 (2), 301-306.
- 2008, İ. Çanak, An extended Tauberian theorem for the (C,1) summability method, Applied Mathematics Letters, 21 (1), 74-80.
- 2007, İ. Çanak, Tauberian conditions in terms of general control modulo of oscillatory behavior of integer order of sequences, International Mathematical Forum, 2 (20), 957-962.
- 2007, İ. Çanak, M. Albayrak, A note on a Tauberian theorem for (A,i) limitable method, International Journal of Pure and Applied Mathematics, 35 (3), 421-424.
- 2007, İ. Çanak, M. Dik, A Tauberian theorem for (C,1) summability method, Applied Mathematical Sciences, 1 (45), 2247-2252.
- 2007, F. Dik, M. Dik, İ. Çanak, Applications of subsequential Tauberian theory to classical Tauberian theory, Applied Mathematics Letters , 20 (8), 946-950.
- 2007, İ. Çanak, Ü. Totur, A Tauberian theorem with a generalized one-sided condition, Abstract and Applied Analysis, Article ID 60360, 12 pp.
- 2007, İ. Çanak, Ü. Totur, M. Dik, Subsequential convergence conditions, Journal of Inequalities and Applications, Article ID 87414, 8 pp.
- 2006, İ. Çanak, Ü. Totur, Tauberian conditions for a general limitable method, International Journal of Mathematics and Mathematical Sciences, No.18, Article ID 82342, 6 pp.
- 2006, İ. Çanak, M. Dik, F. Dik, Conditions for convergence and subsequential convergence, Applied Mathematics Letters, 19 (10) 1042-1045.
- 2005, İ. Çanak, M. Dik, F. Dik, On a theorem of W. Meyer-König and H. Tietz, International Journal of Mathematics and Mathematical Sciences, 15, 2491-2496.
- 2004, M. Dik, F. Dik, İ. Çanak, Classical and neoclassical Tauberian theorems for regularly generated sequences, Far East Journal of Mathematical Sciences, 13 (2), 233-240.
- 1999, C. V. Stanojevic, İ. Çanak, V. B. Stanojevic, Tauberian theorems for generalized Abelian summability methods, Analysis of Divergence : Control and Management of Divergent Processes, Proceedings of the 7th IWAA, 13-26, University of Maine, June 1997, ed. William O. Bray and Caslav V. Stanojevic, Appl. Numer. Harmon. Anal., Boston: Birkhauser.
- 1998, İ. Çanak, Tauberian theorems for generalized abelian summability methods, Mathematica Moravica, 2, 21-66.

Kaynak Gösterilme AdetleriKendisi tarafından 171 kez kaynak gösterilmiştir.
Başkaları tarafından 155 kez kaynak gösterilmiştir.